

technical data

S690 QL/S690 QL1

High Strength, Water Quenched & Tempered Fine-Grain Structural Steel

Works Designation

DIN EN S690Q /S690QL/S690QL1

Condition of Delivery

Water quenched and tempered.

Typical Applications

Heavy road vehicles: chassis, dumper bodies. Cranes construction: booms of mobile cranes. Structural steelworks: bridges, bridge components, components for offshore structures. Pressure vessels: fixed and transportable storage tanks, vessels. Power plants: penstocks, spiral cases. Materials handling: lifting and mobile equipment. Mining and earthmoving equipment: roof supports. Agricultural equipment and trailers.

Chemical Composition (Heat analysis in %)

С	Si	Mn	Р	S	Cr	Мо	Ni	Al
0.20	0.80	1.70	0.020	0.005	1.50	0.70	2.0	0.100
max.	max.	max.	max.	max.	max.	max.	max.	max.

In addition: Ti or/and V or/and Nb.

Mechanical Properties

Plate Thickness mm	Yield Point R _e MPa	Tensile Strength R _m MPa	Elongation at Rupture A₅ %
≤ 50	690	770 - 940	14
> 50 ≤ 100	650	760 - 930	14
> 100 ≤ 150	630	710 - 900	14

Notch Impact Energy

toton impact Energy					
Steel Grade	Position of Samples	0°C	-20°C	-40°C	-60°C
S690Q	Longitudinal	40 J	30 J		
	Transverse	30 J	27 J		
S690QL	Longitudinal	50 J	40 J	30 J	
	Transverse	35 J	30 J	27 J	
S690QL1	Longitudinal	60 J	50 J	40 J	30 J
	Transverse	40 J	35 J	30 J	27 J

Number of Tests

Tensile test and impact test (3 samples) every 40 t or per heat treatment unit respectively.

Fax: 01423 359222 www.ajmarshall.com sales@ajmarshall.com

Processing

Cold-Forming

The steel is suitable for cold-forming adhering to a bending or folding radius of > 4 times plate thickness longitudinal and > 3 times plate thickness transverse to rolling direction. A subsequent stress relief annealing is possible up to a temperature of 580°C.

Hot-Forming

Hot-forming above 580°C is possible. A subsequent quenching and tempering has to be carried out according to the delivery condition.

Milling

Drilling with cobalt-alloyed high-speed steels HSSCO, the cutting speed should be approximately 17 - 19 m/min. If HSS drills are used, it should be approximately 3 - 5 m/min. cutting speed should be approximately 3 - 5 m/min.

Flame-Cutting

The material temperature should be at least room temperature. We recommended the following preheating temperatures: for plate thicknesses > 40mm up to 100°C, > 80mm up to 150°C and > 100mm up to 175°C.

Welding

The steel is suitable for all known welding methods. The material temperature should be at least room temperature. We recommended the following preheating temperatures: for plate thicknesses > 20mm up to 75° C, > 40mm up to 100° C, > 60mm up to 150° C and > 100mm up to 175° C. Interpass temperature should be between 150° C - 225° C.

These indications are standard values only. In general indications of SEW 088 should be adhered to. The $t_{8/5}$ times should be between 5 and 15 s, depending on the welding technique used. A subsequent stress relief annealing for constructional reasons should be done in the temperature range of 530° C - 580° C.

Filler Metals

i illor illotalo		Ī	
Welding Method	Type of Electrode		
E-Hand	FOX EV 85	E11018-GHR4R	Böhler
	OK 75.75	E11018-G	ESAB
UP	3NiCrMo 2,5-UP/BB24	EF6, F11A8-EM4(mod.)-M4	Böhler
	UP-101 NiCrMo 2,5	EF6, F11A8-EM4-M4	FLIESS
	3NiMoCr-UP/BB 418TT	F11A8-EG-F6	Böhler
	OK Autrod 13.43/OK Flux 10.62	F11A8-EG-G	ESAB
	OK Tubrod 15.27S/OK Flux 10.62	F11A8-EC-G	ESAB
MAG	X70-IG/M21	ER110S-G	Böhler
	ED-FK 1000	ER110S-G	FLIESS
	OK AristoRod 69/OK Tubrod 14.03	ER100S-G, E110C-G	ESAB

Full specification and details are available on request.

The above information is provided for guidance purposes only.

For specific design requirements please contact our technical sales staff.

